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In this paper we develop a new Fourier pseudospectral method with a restrain operator 
which is applied to the RLW equation. The numerical results show the advantages of this 
method. We prove the generalized stability and the convergence of the scheme. 0 1988 

Academic Press, Inc. 

I. INTRODUCTION 

In this paper we consider the periodical problem of the RLW equation 

Jg+ag+u!$ a3u 
atdX2 =f, XEQ; te(O, z-1, 

aqo, t) aw(2, t) 
ax4 = ax” ’ 

q=o, 1; ?E [O, T], (1) 

U(x, 0) = UC+), XE 8, 

where 9 = (0, 2), 6 > 0, f(0, t) =f(2, t), and a is a constant. 
In 1966, Peregrine [ 1 ] proposed the first numerical method for solving (1). In 

1976, Abdulloev, Bogolubsky, Makhankov [2] showed numerically that the 
collision between two soliton-like waves is inelastic. Olver [3] proved that a RLW 
equation possesses only three conservations. 

Other numerical methods can be found in Eilbeck and McGuire [4,5], 
Alexander and Morris [6], and Arnold et al., [7]. Recently Wu and Guo [8], 
using a difference scheme with high accuracy, found that four waves were formed 
after the collision between two soliton-like waves. The accuracy of numerical 
solution of both finite element and difference methods is limited, even if the solution 
of (1) is very smooth. 

The spectral method and pseudospectral method are two important numerical 
methods for P.D.E. (see Gottlieb and Orszag [9]). Pasciak [lo] and Guo and 
Manoranjan [ 1 l] used these methods to solve the RLW equation. The pseudo- 
spectral method is preferable when dealing with nonlinear terms. However, it is less 
stable than the spectral method due to the aliasing interaction. For remedying this 
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deficiency Kreiss and Oliger [12], Kuo [13], and Ma and Guo Ben-yu [14] 
proposed several filtering techniques. In this paper, we modify the filtering 
technique used in [ 141 and give a new pseudospectral method applied to (1). We 
test numerically the effect of the restrain operator and find that 

(i) If the vibration of the solution of (1) is small and 6 large, then the effect of 
the restrain operator is not clear. 

(ii) If the vibration of the solution of (1) is big or 6 very small, then the 
restrain operator increases the stability. 

(iii) If we use the filtering technique in the same way as in [14] (i.e., scheme 
(8) in this paper), then the numerical result is poor, especially for very small 6 (see 
Table VI, in Section III). But the new method proposed here gives a uniformly 
good approximation independent of 6 (see Tables V, VI, in Section III). 

We use the technique of generalized stability of Guo [ 15, 161 (i.e., g-stability; see 
Grihiths [17]), to strictly estimate the error. Four estimates are established. Only 
two of them depend on 6. The convergence is given also. 

Let 

Now we derive the new pseudospectral method. Let N be a positive integer and n 
any integer: 

I’, = Span{e”“iX/lnl <N}. 

v,v is a real value function subset of V,. 
operator from L*(9) to VN, i.e., 

Let P, be the orthogonal projection 

@NU, w) = (4 w), VW E VN. 

Let P, be the interpolation operator from C(s) to V, such that 

Pc"txj) = u(xj)9 
2j 

Xj=2N+ j= 0, l,..., 2N. 

From [12], 

(0, W)N = (PCU, Pcw)N= (PC 0, PCW), vu, w E c(9), (2) 

581/74/l-S 
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where 

2 
(uT W)N=2N+ 1 j=. 

- : U(Xi)iqqj. 

Let t be the mesh spacing of the variable t, S, = {k 10 <k < [T/t] - 1 } and 
ok(x) = u(x, kz). Define 

u:(x)++‘(x)-d(x)). 

As is well known, a reasonable scheme must keep the properties similar to those of 
(1). Indeed the solution of (1) satisfies the following conservations 

j2 u(x, t) dx = j-2 U,(x) dx + j; j;/(x, 5) dx dt. (3) 
0 0 

lIWN2+~ IWl:= IWoI12+~ Iu,l:+2jh3, WO)&. 
0 

(4) 

In order to simulate (3) and (4), we define the following operator 

44x), rp(x))=fp, ( 4w; u(x) +;~P,(s(x). u(x)). > 
It can be shown that for all u, W, cp E vN, 

Mu, cp), w) + (J(w, cp), 0) = 0. 

The simplest pseudospectral method for (1) is to find uk E tiN such that 

u:(x) + tl; d(X) + J(dyX) + m:(x), d(X)) - 6 -$ u:(x) 

(5) 

=PcP(x)~ xeQ, k&s,, (6) 

uO(x) = p, V,(x), x E 9, 

where 0 < 6 < 1. But the numerical results showed that scheme (6) is not stable for 
very small 6. On the other hand, for the error estimation uniformly for 6, we have 
to establish the following inequality 

where b(w) is independent of N, and 

.‘(I-&gl. 
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But the inequality (7) is not true generally. For instance, we consider the following 
functions 

u(x) = uN eN*ix, w(x) = 1 + 2i sin 71x, 

and so from (2) 

Since 

I(~,F(LJ~), w)i = 1 :EtNI l(Pce2NziXv w)l 

= 1 lEtN2 ((PC epnir, w)l 

= 1 :EiN2 I(eCniX, w)l 

2nNai 
= l+&r*N*’ 

the constant b(w) is much larger for very small 6 and large N. 
Obviously the main difficulties in the previous paragraph come from the high 

frequency terms. In order to remedy it, the restrain operator R, is proposed in 
[13, 141 such that for 

u(x) = C a, ennix, 
In1 <N 

we have 

R,o(x)= 1 
Inl C N 

In [14], the nonlinear term U(x, t)(a/ax) U(x, t) is approximated by 
J(z?(x) + c$(x), R,d(x)), which is successfully applied to the KDV equation. If 
we generalize this method to (1) directly, then we have 

u:(x) + u -& uk(x) + J(uk(x) + oruf(x), R&X)) - 6 -$ u;(x) 

= PC fkW9 xeQ,keS,, 

uO(x) =Pc U,(x), x E 9. (8) 



114 GUO AND CA0 

When c = 0, we can solve (10) explicitly. This is one of the advantages of the 
spectral method and pseudospectral methods. But the numerical result is unsatis- 
factory. In particular, the error is very big for c( # 0 and small 6 (see Table VI, in 
Section III). 

In this paper, we approximate the nonlinear term by R,J(R,,&(x)+ 
crR,$(x), Z&X)) and use the filtering technique for the linear term cr(a/ax) z?(x) 
and the right term P,~&(x). Now we have the scheme 

u;“(x) + aR, i Uk(X) f R,J(R,uk(x) + CZR,Uf(X), Uk(X)) 

Clearly, 

kES,, 

VVE v,. 

From (5), for all v, w, cp E pN, 

(R” 4&v, cp), w) + (&J(R,w cp), 0) =o. 

If CJ = f, then it follows from (9)-j 11) that 

1,2 uk(x) dx = 1; u’(x) dx + z ‘f’ j2 R,p,.f’(x) dx, 
f=O 0 

k-l 

(luk112+6 lukl:= llu”l12+6 Ju” I;+z 1 (R,p,f’, ut+ue+‘), 
f=O 

which are the discrete analogy of (3) and (4). 

III. NUMERICAL RESULTS 

We test the effect of the restrain operator with the function 

Put N= 8, r = 0.01, and 

U(x, t) = A exp(A sin nx + 0.Q). 

let 

(9) 

(10) 

(11) 

E(t) = max l”(xj9 l)- u(xj9 f)l 
O<j$ZN 
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All computations are carried out with the explicit scheme, i.e., LT = 0. The numerical 
results show that 

(i) If the vibration of the genuine solution of (1) is small (e.g., A = 0.1) and 
a = 0, then the effect of R, is not clear (see Table I). The accuracy of (9) is nearly 
the same as the spectral method of [ 111. 

(ii) If 6 is large (e.g., 6 = l), then the operator R, is not important even 
though the vibration of a genuine solution is big (see Table II). 

(iii) If the vibration of a genuine solution is big and 6 small (e.g., A = 1, 
6 = 10-6, 10e4), then the effect of R, is very clear, see Tables III and IV. 

(iv) The smaller the parameter 6, the more important the linear term 
a(dU/lJx). Thus the operator R, is very important even if the vibration of the 
genuine solution is not big. Tables I and IV show that the effect of R, is not clear 
for a=O, A=O.l, but very clear for a=2, A=O.l. 

(v) The value of v in the restrain operator must be suitably chosen. If v is too 
large, the filtering technique is weakened. If v is too small, the approximation 
accuracy is lowered. The suitable value of v is between 5 and 10. But the best value 
of v is different in different cases. For instance, the best choice in Table IV is v = 3. 

(vi) For the proof of convergence, the filtering technique for the linear term 
and right term is not important. But numerical experiment shows the importance, 
see Table V. In Table V, schemes (9),, are similar to (9), but the linear term and 
the right term are respectively approximated in the following 

Scheme (9)a: a & Us, R,P, fk(x); 

Scheme (9)b: a& k uk(x), Pcfk(x); 

Scheme (9)~: PC fk(4. 

(vii) The numerical results of scheme (8) are much worse than that of scheme 
(9) and so the new filtering technique in this paper is better for the explicit scheme 
of a nonlinear problem. In Table VI, schemes (8) a-c are similar to scheme (8) with 
the linear term and the right term approximated by 

Scheme (8)a: 

Scheme (8)b: R,P, fk(x); 

Scheme (8)~: a -& Us, PC f “(x). 
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TABLE I 

Scheme(9), cr=O,a=O,A=O.l. 

E( 5.0) v=5 v= 10 v = 50 

6=10-6 0.00228242 0.00228203 0.00228193 
s = 10-4 0.00228399 0.00228281 0.00228183 
6=10-* 0.002298 17 0.00229622 0.00229651 
6=1 0.00236857 0.00236493 0.00236557 

TABLE II 

Scheme (9), o = 0, 6 = 1, A = 1. 

E( 5.0) v=5 v= 10 v=50 

a=2 0.00144118 0.00118726 0.00115333 
a=0 0.00231011 0.00215183 0.00216537 

TABLE III 

Scheme (9), u=O, a=O, A=l. 

E( 1.0) v=5 v=lO v=50 

6 = 10-h 0.00329499 0.0355039 0.235286 
6=10-d 0.0283234 0.0124055 0.170894 

TABLE IV 

Scheme (9),a=2, A=O.l 

E(2.0) v=3 v=5 v=io v = 50 

6 = 10-G 0.00156715 0.0186465 0.0243057 > 10 
s= 10-4 o.cO155333 0.00163698 0.0111043 0.702116 

TABLE V 

u=O, a=2, v=lO, 6=10-* 

E(0.5), A = 1. E(2.0), A=O.l. 

Scheme (9) 0.0454317 0.0243057 
Scheme (9)a 0.0745903 7.42054 
Scheme (9)b 0.564465 0.0275 196 
Scheme (9)~ 2.08395 9.66944 
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TABLE VI 

u=0,a=2,‘4=1,v=10,6=10-6 

Scheme (8) Scheme (8)a Scheme (8)b Scheme (8)c 

E(0.5) 0.136626 0.271632 7.86826 2.89614 

(viii) Another pseudospectral scheme is 

a 
4(x) + a& ;i;; d(x) + R, J(R,d(x) + CJTR~U;(X), R&X)) 

This scheme seems more reasonable, but the numerical results show that the 
accuracy of (12) is nearly the same as scheme (9). 

TABLE VII 

cr=O,A=l,v=lO 

E(OS), a = 2 E(l.O), a=0 

6 = 10-6 6 = 10-a 6 = 10-6 6 = 10-k 

Scheme (9) 0.0454317 0.0311898 0.0355039 0.0124055 
Scheme (12) 0.0586913 0.036803 1 0.0129624 0.0181770 

TABLE VIII 

E(2.0), a = 2 

s= 10-6 6 = 10-d 

E(KO),a =0 

6=10-G 6=10-d 

Scheme (9) 0.0243057 0.0111043 0.00228203 0.00228281 
Scheme (12) 0.0244925 0.0124284 0.00228242 0.00228232 
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IV. ERROR ESTIMATIONS 

Assume that u”(x) and f k(~) have respectively the error 17’(x) and f”(x). Then 
the error of U“(X), denoted by Ek(x), satisfies 

q(x) + crR,; ii&(X) + R,J(R,fik(x) + ozR,i:(x), ii&(X) + U&(X)) 

+ R, J(~,uk(x) + ozR,u:(x), ii&(X)) - 6 g l?:(x) = R,p,jyx). (13) 

Let 

In particular, the inner product and the norm are (., .) and (I./(, respectively, for 
p = 2. For any positive integer, let (u(~ = Il&/~xB 11, 

For any positive constant p, HP($) is the complex interpolation space between 
Htsl($) and #a1 + ‘(9). Define 

q(9)= (UlUEIP(9), u(x)=u(x+2)}. 

We denote by Cy(O, T; H;(9)) the space of abstract functions with the norm 

I141cl(o, r;H;(9))= max max 
asu(t) 

OCs~qO~r~T II-II ats 8’ 

Similarly we define the space P(O, T; H$(S)). Let ([Iv([(~ = maxoGkrG T lluk(la. In par- 
ticular, 1110~~~ = maxoG,, G TIIukl(. Let p be a suitably small positive constant and 

k-l 

QkW= Ilukl12+6 bkl:+Pr2 c (lbFl12+~ bFI3, 
<=o 

k-l 

THEOREM 1. (i) If o < 4, then there exist positive constants b,, b,,b, depending 
only on IIl4ll 3/2+y (Y>o) and8 such that for aN kz d T, pk(iiO,T ) i b,/tN, 

Qk(ii) < b2pk(iio,f) ebjkT. 



FOURIER METHOD WITH A RESTRAIN OPERATOR 119 

(ii) Zf u > 4 then there exist positiue constants b4, b5 depending on )Ijulll 3,2 + y 
and 6 such that for all k and pk(U”‘,3 ), 

(iii) If a<& z = O(Nd2), then there exist positive constants b6, b,, b, 
depending only on III 4ll3/2 + y such that for all kz < T, pk(ii0,3 ) < b,N-‘, 

Qk(ii) < b,pk(l10,3) ebskr. 

(iv) Zf o > 4, z = O(N-*), then there exist positive constants b,, b,, depending 

Only On IbdI3/2+y such that for all k and pk(iio,3), 

Qk(ii) 6 b9pk(ii0,f) eblokr. 

Next consider the convergence. Let U(x, t) and Us be the solutions of (1) and 
(9), respectively. 

THEOREM 2. Assume that 

(i) U e H2(0, T; H;(9)) n C(0, T; H,8(9)), U, E H!(9), f E C(0, T; Hi- *(a)); 

(ii) v>p>2, 

then for all kr < T, 

Qk(u- U) < b,Ieb12k’(z2 + N*-‘p), 

where b,, and b,* are positioe constants depending on 1) Ucllls, 11 f II c(o, r;H~- I(~)), 
II UII ffqo. T:&(g)) 7 II W,.(O, T;Hlr(S)), and 6. Zf z = O(Ne2), then b,, and b12 are indepen- 
dent of 6. 

V. SOME LEMMAS 

For the proof of the theorems, we need the following lemmas. 

LEMMA 1 [l2]. Zf O<p<B, u~H~(g), then 

llPNu- ~11~ < cN”-~ IuIp. 

If b > $, in addition, then 

LEMMA 2 CL?]. Zf O<p<fi, UE VN, then 

I141s6~NB-P IblIp. 
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LEMMA 3 [12]. If u, w E V,, then 

lI~wI12~w+ 1) Ilull lIwl12. 

LEMMA 4 [14]. ZfO<p<~<v,u~V~,then 

IIR,u-ull,<cNp-~ I”lp 

For simplicity, we introduce the circle convolution operator “*” such that if 

then 

u(x) = 1 a, ennix, w(x) = c b, ennix, 
Inl< N InI <N 

u * W(X) = 1 c arb,-, ennix, 
Inl <N III <N 

where an+2N+l=any bn+2,w+, = b, . From [14], for u, w E I/,, cp E PIN, we have 

P,(u(x) w(x)) = fJ * w(x), (14) 

(0 * cp, w) = (0, cp * 0). (15) 

LEMMA 5 [14]. Zfu~ VN, w~H~‘*+~(S),y>0, then 

~(R.u*~,w)~Bc,vllwll,,~+, IIUl12~ 

l(u * I?“$ w)I <c,v Ilwl13,2+y IIul12, 

where c, is a positive constant depending only on y. 

LEMMA 6. Zfu, WE V,, y>O, then 

IRJ(~,w u), 011 Gcy Ilwl13,2+r I1412. 

Proof. We have 

1 
6- 3 I( 

u*R,z -7 R,u 
>I I( 

’ a (u*RYw),RYu +7 z 
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From (15) and Lemma 5 

This completes the proof. 

LEMMA 7 [ 151. Zf the following conditions are fulfilled 

(i) Zk is nonnegative function of k, M,, M2, M3, and p are nonnegative 
constants, 

(ii) a,, a,, and a3 are constants, 

(iii) if Y < MI IV”‘, then q(Y) < 0, 

(iv) for all k > 1, 

k-l 

Zk <p + T c [M, z’ + M,(Z’)W”3 + q(Zt)], 
<=O 

(v) Z” < p < epcM2 + M3)T min(Npa31a2, M, N”l), 

then for all kz < T, 

Zk<pe . CM2 + M3)kr (16) 

In particular, (16) holds for all k and p provided M, = 0 and q( Y) < 0. 

VI. THE PROOF OF THEOREM 1 

By taking the inner product of (13) with 2iik(x), we have from (10) and (11) that 

(Iliikl12+6 lfikl;),-t(lIii~l(*+6 (B#)-2ar(R,J(R,iik, 

uk + iik), ii;) + 2(R,J(R,uk + orR, u;k, zik), Ck) 

= 2(~,~,3k, ii”). 
( 17) 

., it Let m and E be positive constants. Taking the inner product of (13) with mzfi;k 
follows from (11) that 

6:) + mt(R,J(R,uk + o~R,u;k, iik), ii:) = mz(R,p,3k, n:). (18) 
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The combination of (17) with (15) leads to 

where 

Ff = z(m - 2a)(R,J(R, iik, uk + iik), i-if), 

Fi = (R, J(R,uk + atR,uf , fi”), iik), 

F: = mz(R, J(R,uk + ozR,ur, iik), ii:), 

F;=olmi(Rv$Pk,$). 

Now we estimate IF; I. From Lemmas 14, we have 

IF’;1 <ET IIii:ll*+ 
cz(m-20)* auk * 

E 
(II II ax L”o(9) ll~kl12+ lIUkllL”(9) Fkl: 

+ N Iliikl12 lii”l: 
> 

GE7 I(ii:ll*+ “trn ; 2a)2 ( IIuk(l 
3,2+y(Il~kl12+ lfikM+N ll~kl12 l~“l:,. 

Lemma 6 leads to 

We have also 

(19) 

Substituting the above estimations into (19), we get 

(Ilfikl12+~ I~kl:),+t(m-1-4~)(llii;k~~2+6 ICfI:)sRk, (20) 
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where 

Let p be suitably small. Take E = t(m - 1 - p) > 0 and 

Then 

m=20, H,=O, for o>$, 

m = 2, Ho= 1, for a<$. 

from which 

(21) 

Qk@)W’k(fio,f)+~~ 1 [(I + III~IIl:,2+y)(lliitl12+Gliit-l:)+~NH~ Ili?‘ll* lii’l:]. 
C=O 

Since Lemma 2 and 

Nllkkl12 liq 6 6N liPI: +$ lli-fy 

or 

N Iliikl12 lfi”l: G CN3 I(iik(14. 

Lemma 7 completes the proof. 

VII. THE PROOF OF THEOREM 2 

Let W(x, t) =p,,,U(x, t). From (l), we have 

awx, r) + a awx, t) wx, t) 
at ax +PN w, t) -jy _ 6 a3wx, t) 

at ax* =PNf(xv t) 

and so 

C(x) + a& 
a Wk(x) 
- + R, J(Rywk(x) + CTTR, W;(x), Wk(x)) ax 

_ 6 a* w:(x) 
ax* = R,~,f~(x) + i g:(x), 

I= 1 
(22) 
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where 

aw(x, kT) 
g:(x) = ww- at , 

a Wk(x) a Wk(x) 
g:(x) = aR, ax - cc -, 

f3X 

g:(x) = Rv J(R, Wk(x) + 0% W:(x), wk(x)) -pN 

a3 wk(x) a2 w:tx) 
d(x)=6 at ax* -6 ax* 3 

g:(x) =IJN~~(x) - R,~,.f~(x). 

au(x, kg ax , 

Let ek(x) = Us - Wk(x). From (9) and (22), it follows that 

aek(x) 
e:(x) + crR, - ax + R,J(R,ek(x) + otR,ef(x), Wk(x) + ek(x)) + RJR, Wk(x) 

a2ek(x) + a% W;(x), e”(x)) - 6 --&-- = - i g:(x). 
I= I 

Integration by parts leads to 

awtx, kt) 
at 

and thus 

It is easy to prove that 

h-l 

z c Ilg~112~C~*-*~ II~Ilf(o,r;Ha(~))~ 
C=O 

By an argument similar to that of [14], 
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We have 

We have also 

k-l 

t 1 lldI12~C~2-2P Ilfll~(o,T;HP-+?))~ 

The previous estimations give 

k-l 

Ile”llf+T C i-o(,=I13 5 ll~~l12+l~ni~~i+~~~i~l) 
. , . 

k-l 

G6' 1 (leSl:+ET lefl?)+Cz2 lIUIl~2(0,T:L*(9))+CT2 IIUII$Z(~,~;,$(~)) 

+ a2 - 2a II VI Z(O. T; M(9)) +CN2-2S II~oll;+c~2-2~ IlfII&gjH(&q). 

Finally we finish the proof with an argument similar to that in Section VI and with 
the use of the triangular inequality. 
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